Enhanced optical output power of blue light-emitting diodes with quasi-aligned gold nanoparticles

نویسندگان

  • Yuanhao Jin
  • Qunqing Li
  • Guanhong Li
  • Mo Chen
  • Junku Liu
  • Yuan Zou
  • Kaili Jiang
  • Shoushan Fan
چکیده

The output power of the light from GaN-based light-emitting diodes (LEDs) was enhanced by fabricating gold (Au) nanoparticles on the surface of p-GaN. Quasi-aligned Au nanoparticle arrays were prepared by depositing Au thin film on an aligned suspended carbon nanotube thin film surface and then putting the Au-CNT system on the surface of p-GaN and thermally annealing the sample. The size and position of the Au nanoparticles were confined by the carbon nanotube framework, and no other additional residual Au was distributed on the surface of the p-GaN substrate. The output power of the light from the LEDs with Au nanoparticles was enhanced by 55.3% for an injected current of 100 mA with the electrical property unchanged compared with the conventional planar LEDs. The enhancement may originate from the surface plasmon effect and scattering effect of the Au nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced optical output and reduction of the quantum-confined Stark effect in surface plasmon-enhanced green light-emitting diodes with gold nanoparticles.

We report the optical properties of localized surface plasmon (LSP)-enhanced green light-emitting diodes (LEDs) containing gold (Au) nanoparticles embedded in a p-GaN layer. The photoluminescence (PL) and electroluminescence (EL) intensities of a green LED with Au nanoparticles were enhanced by the coupling between excitons and LSPs. Excitation power-dependent PL and injection current-dependent...

متن کامل

Enhanced optical output power of InGaN/GaN vertical light-emitting diodes by ZnO nanorods on plasma-treated N-face GaN.

Light-emitting diodes (LEDs) play an important role as a formidable contender for next-generation lighting sources and rapidly replace conventional lighting sources. In this report, the growth of high density inclined ZnO nanorods (NRs) on the N-face n-GaN surface for high efficiency vertical light-emitting diodes (VLEDs) is demonstrated based on oxygen plasma pretreatment and hydrothermal grow...

متن کامل

Improving Blue InGaN Laser Diodes Performance with Waveguide Structure Engineering

To enhance lasers’ power and improve their performance, a model wasapplied for the waveguide design of 400 nm InGaN/InGaN semiconductor laser, whichis much easier to implement. The conventional and new laser structures weretheoretically investigated using simulation software PICS3D, which self-consistentlycombines 3D simulation of carrier transport, self-heating, and opt...

متن کامل

III-nitride blue and ultraviolet photonic crystal light emitting diodes

We present results on enhancement of 460 nm blue and 340 nm UV optical power output in III-nitride light emitting diodes ~LEDs! using photonic crystals ~PCs! under current injection. Triangular arrays of the PCs with diameter/periodicity of 300/700 nm were patterned using electron-beam lithography and inductively coupled plasma dry etching. The total power at 20 mA of 3003300 mm unpackaged LED ...

متن کامل

Effects of LED Light on Seed Emergence and Seedling Quality of Four Bedding Flowers

Recently much attention has been paid by horticulturists to light-emitting diodes as a new source of economical and spectral-selective light. The reason is mainly coming from their versatility in handling and mounting, long working time, wattage use efficiency and lower heat production. In this study we examined their potential in promoting seed germination and producing quality flower seedling...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014